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Prove that:
in2 ~ n(n+1)(2n—1)
N 6
n=1

Basis of induction:
e We are able to show that n(1) is true since:

1(1+1)(2-1)
6

=12=1
e Through induction, we want to prove that this equation is true for all
values k, where k > 1. This means that k+1 is also true.

Proof by Induction:

e Let that the following is true is for any number of n:

e Using the properties of summation, we get:
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e Following hypothesis of our proof, we can substitute the summation equa-

tion for %
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e Expand the right side:
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e Since we are using induction to solve this equation, the original n in the
front of the equation is now n + 1. With this this, we can use synthetic
divison to find the factors:

-11|2 9 13 6

e Through even more simplification, this is the simplified equation:

(n+1)(p+2)(2p+3)
6

e Analyzing the equation, we are able to see that n is substituted by n+1
in our equation:

(k+1)((k+1)+1)(2(k+1)—1)
6

n(n+1)(2n—1)

5 is true for n € Z

e Therefore, since both n and n+1 are true,



